Add like
Add dislike
Add to saved papers

Biodegradation of Pendimethalin by Paracoccus sp. P13.

In this study, a bacterial strain P13 capable of degrading pendimethalin was isolated from the soil of a fruit garden. Based on observed cellular morphology and physiology characteristics and a phylogenetic analysis of 16S rRNA gene sequences, strain P13 was identified as a member of the genus Paracoccus. Strain P13 grew on pendimethalin as the sole carbon source, and could degrade 100 mg/L pendimethalin within 2 days and 200 mg/L pendimethalin within 5 days. Pendimethalin degradation was proposed to be initiated by oxidation ring cleavage to yield 1,3-dinitro-2-(pentan-3-ylamino)butane-1,4-diol, an alkane organic compound that was identified by ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS), which then underwent a series of enzymatic reactions to produce CO2 and H2 O. The optimal pH and temperature for pendimethalin degradation by strain P13 were 7.0 and 30 °C, respectively. This study identified the bacterial strain Paracoccus sp. P13, which degraded pendimethalin with a relatively high efficiency, and presents a previously unreported microbial pendimethalin degradation pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app