Add like
Add dislike
Add to saved papers

In vivo fluorescence imaging of hepatocellular carcinoma using a novel GPC3-specific aptamer probe.

Background: Glypican-3 (GPC3) is highly expressed in most of the hepatocellular carcinomas (HCCs), even in small HCCs. It may be used as a potential biomarker for early detection of HCC. The aptamer is a promising targeting agent with unique advantages over antibody. This study was to introduce a novel GPC3 specific aptamer (AP613-1), to verify its specific binding property in vitro , and to evaluate its targeting efficiency in vivo by performing near-infrared (NIR) fluorescence imaging on an HCC xenograft model.

Methods: AP613-1 was generated from the systematic evolution of ligands by exponential enrichment. Flow cytometry and aptamer-based immunofluorescence imaging were performed to verify the binding affinity of AP613-1 to GPC3 in vitro . NIR Fluorescence images of nude mice with unilateral (n=12) and bilateral (n=4) subcutaneous xenograft tumors were obtained. Correlation between the tumor fluorescence intensities in vivo and ex vivo was analyzed.

Results: AP613-1 could specifically bind to GPC3 in vitro . In vivo and ex vivo tumors, fluorescence intensities were in excellent correlation (P<0.001, r=0.968). The fluorescence intensity is significantly higher in tumors given Alexa Fluor 750 (AF750) labeled AP613-1 than in those given AF750 labeled initial ssDNA library both in vivo (P<0.001) and ex vivo (P=0.022). In the mice with bilateral subcutaneous tumors injected with AF750 labeled AP613-1, Huh-7 tumors showed significantly higher fluorescence intensities than A549 tumors both in vivo (P=0.016) and ex vivo (P=0.004).

Conclusions: AP613-1 displays a specific binding affinity to GPC3 positive HCC. Fluorescently labeled AP613-1 could be used as an imaging probe to subcutaneous HCC in xenograft models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app