Add like
Add dislike
Add to saved papers

Bacterial Aggregates Establish at the Edges of Acute Epidermal Wounds.

Objective: The bacterial composition and distribution were evaluated in acute standardized epidermal wounds and uninjured skin by a molecular in situ technology benchmarked to conventional culturing. This was done to reveal whether bacterial biofilm is present in acute wounds. Approach: On the buttock of 26 healthy volunteers, 28 suction blisters were made and de-roofed. Four wounds were biopsied immediately after wounding, whereas the remaining 24 wounds were treated daily with sterile deionized water and covered with a moisture-retaining dressing. On day 4 post-wounding, swabs were obtained for culturing from the wounds and adjacent skin, and the wounds including adjacent skin were excised. Tissue sections were stained with peptide nucleic acid (PNA) fluorescence in situ hybridization (FISH) probes, counterstained by 4',6-diamidino-2-phenylindole, and evaluated by confocal laser scanning microscopy (CLSM). Results: No bacterial aggregates were detected at day 0. At day 4, coagulase-negative staphylococci (CoNS) were the sole bacteria identified by CLSM/PNA-FISH and culturing. CoNS was isolated from 78% of the wound swabs and 48% of the skin swabs. Bacterial aggregates (5-150 μm) were detected by PNA-FISH/CLSM in the split stratum corneum and fibrin deposits at the wound edges and in the stratum corneum and the hair follicles of the adjacent skin. The bacterial aggregates were more common ( p  = 0.0084) and larger ( p  = 0.0083) at wound edges than in the adjacent skin. Innovation: Bacterial aggregates can establish in all wound types and may have clinical significance in acute wounds. Conclusion: Bacterial aggregates were observed at the edges of acute epidermal wounds, indicating initiated establishment of a biofilm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app