Add like
Add dislike
Add to saved papers

L 1 -norm based nonlinear reconstruction improves quantitative accuracy of spectral diffuse optical tomography.

Spectrally constrained diffuse optical tomography (SCDOT) is known to improve reconstruction in diffuse optical imaging; constraining the reconstruction by coupling the optical properties across multiple wavelengths suppresses artefacts in the resulting reconstructed images. In other work, L1 -norm regularization has been shown to improve certain types of image reconstruction problems as its sparsity-promoting properties render it robust against noise and enable the preservation of edges in images, but because the L1 -norm is non-differentiable, it is not always simple to implement. In this work, we show how to incorporate L1 regularization into SCDOT. Three popular algorithms for L1 regularization are assessed for application in SCDOT: iteratively reweighted least square algorithm (IRLS), alternating directional method of multipliers (ADMM), and fast iterative shrinkage-thresholding algorithm (FISTA). We introduce an objective procedure for determining the regularization parameter in these algorithms and compare their performance in simulated experiments, and in real data acquired from a tissue phantom. Our results show that L1 regularization consistently outperforms Tikhonov regularization in this application, particularly in the presence of noise.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app