Add like
Add dislike
Add to saved papers

Unsymmetrical difunctionalization of cyclooctadiene under continuous flow conditions: expanding the scope of ring opening metathesis polymerization.

Chemical Science 2018 Februrary 22
Functionalized cyclooctenes (FCOEs) are important monomers in ring-opening metathesis polymerization (ROMP). Herein, a new library of disubstituted FCOEs bearing adjacent heteroatoms were synthesized and applied in ROMP. To address the issues associated with the handling of the reactive thienyl chloride intermediate, a two-step continuous flow method has been developed to prepare 5-thio-6-chlorocyclooctene compounds from abundant cyclooctadiene starting materials. These newly synthesized FCOE monomers were subsequently polymerized through ROMP, giving rise to a range of functionalized polymers with high molecular weights. Furthermore, we demonstrated that the thermal properties of these polymers could be fine-tuned by changing the functional groups in the FCOE monomers. We expect that this functionalization-polymerization strategy will enable the preparation of a range of polymeric materials with complex structures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app