Journal Article
Review
Add like
Add dislike
Add to saved papers

Cadherin profiling for therapeutic interventions in Epithelial Mesenchymal Transition (EMT) and tumorigenesis.

The major hallmarks of Epithelial-Mesenchymal Transition (EMT) is the loss of epithelial cell polarity and loss of expression of the cell- cell adhesion molecule like E-cadherin and acquired mesenchymal cells marker called N-Cadherin. This phenotypical changes of E-M plasticity of cells is extensively considered to be a crucial factor for tumor cells invasion and cancer metastasis; landmark events for transforming a locally growing tumor (benign tumor) into a systemic and live-threatening disease (malignant tumor). Cadherin molecules are adherens junction proteins and expressed as multiple isoforms. Cadherin switching occurs during normal tissue developmental processes; also recapitulates the increasing aggressive behavior and metastatic nature of cancer cells when E-Cadherin converts to N-Cadherin, in particular. There are several mechanisms established that cadherin switching and some of the underlying pathways involves multiple steps associated with migration and invasion of cancer cells, and finally colonization of micro metastatic lesions to form macro-metastasis. Inhibition of metastasis is complicated by the plasticity of cancer cells behaviors and the evolving nature of microenvironment. Although there is no clear evidence how that dynamic structural switching of cadherin family member occurs, stabilized and eventually influence cell behavior, phenotypic transformations and initiate tumorigenesis. Therefore, we emphasize here the major functions of over 20 existing human cadherins in tissue integrity and stability as well as mechanistic understanding on recent work of cadherin ectodomain-mediated adhesion, functional studies of the cell-cell adhesion through key signaling intermediates interacting with other binding partners. We hope understanding on how the dynamic all existing cadherins influence the cell behavior can be targeted to design possible therapeutic interventions to combat its activity and prevent tumor cell growth, invasion and metastasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app