Add like
Add dislike
Add to saved papers

3D printed device for the automated preconcentration and determination of chromium (VI).

Talanta 2018 July 2
A 3D printed device for the fully automated disk-based solid-phase extraction (SPE) of Cr (VI) from water samples has been fabricated. The compatibility of the use of organic solvents for analyte elution with 3D printed flow devices based on polymers fabricated using stereolithograph​y has been evaluated. The developed methodology comprises the complexation of Cr (VI) with 1, 5-diphenylcarbazide (DPC) in acidic medium and the subsequent retention of the complex in a SBD-RPS disk contained within the 3D printed device. A multisyringe flow injection analysis system with online spectrophotometric detection has been used for the automation of the method. The fabricated 3D printed device integrates the different components of the flow analysis manifold, including connectors and mixers, being a powerful approach towards the reproducible construction of highly integrated flow-based manifolds. The extracted Cr (VI)-DPC complex is eluted with a mixture of methanol- sulfuric acid and quantified at 540 nm. The effect on the analytical signal and the optimization of variables were evaluated using multivariate and univariate techniques. A detection limit of 1 ng Cr (VI) and a linear working range of 3.2-600 ng Cr (VI) were obtained using a sample volume of 2 ml. The intra-day and inter-day RSDs were 4.8% (10 µg L-1 , n = 12) and 3.4% (n = 5, different day with a different disk), respectively. The applicability of the fabricated 3D printed device has been proved by the determination of Cr (VI) in groundwater, surface water and leachates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app