Add like
Add dislike
Add to saved papers

Tanshinone IIA suppresses FcεRI-mediated mast cell signaling and anaphylaxis by activation of the Sirt1/LKB1/AMPK pathway.

AMP-activated protein kinase (AMPK) and its upstream mediators liver kinase B1 (LKB1) and sirtuin 1 (Sirt1) are generally known as key regulators of metabolism. We have recently reported that the AMPK pathway negatively regulates mast cell activation and anaphylaxis. Tanshinone IIA (Tan IIA), an active component of Salvia miltiorrhiza extract that is currently used for the treatment of cardiovascular and cerebrovascular diseases, shows anti-diabetic activity and improves insulin resistance in db/db mice through activation of AMPK. The aim of this study was to evaluate the anti-allergic activity of Tan IIA in vivo and to investigate the underlying mechanism in vitro in the context of AMPK signaling. The anti-allergic effect of Tan IIA was evaluated using mouse bone marrow-derived mast cells (BMMCs) from AMPKα2-/- or Sirt1-/- mice, or BMMCs transfected with siRNAs specific for AMPKα2, LKB1, or Sirt1. AMPKα2-/- and Sirt1-/- mice were used to confirm the anti-allergic effect of Tan IIA in anaphylaxis in vivo. Tan IIA dose-dependently inhibited FcεRI-mediated degranulation and production of eicosanoids and cytokines in BMMCs. These inhibitory effects were diminished by siRNA-mediated knockdown or genetic deletion of AMPKα2 or Sirt1. Moreover, Tan IIA inhibited a mast cell-mediated local passive anaphylactic reaction in wild-type mice, but not in AMPKα2-/- or Sirt1-/- mice. In conclusion, Tan IIA suppresses FcεRI-mediated mast cell activation and anaphylaxis through activation of the inhibitory Sirt1-LKB1-AMPK pathway. Thus, Tan IIA may be useful as a new therapeutic agent for mast cell-mediated allergic diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app