Add like
Add dislike
Add to saved papers

Lysophosphatidic acid induces neuronal cell death via activation of asparagine endopeptidase in cerebral ischemia-reperfusion injury.

Lysophosphatidic acid (LPA), an extracellular signaling molecule, influences diverse biological events, including the pathophysiological process induced after ischemic brain injury. However, the molecular mechanisms mediating the pathological change after ischemic stroke remain elusive. Here we report that asparagine endopeptidase (AEP), a lysosomal cysteine proteinase, is regulated by LPA during stroke. AEP proteolytically cleaves tau and generates tauN368 fragments, triggering neuronal death. Inhibiting the generation of LPA reduces the expression of AEP and tauN368, and alleviates neuronal cell death. Together, this evidence indicates that the LPA-AEP pathway plays a key role in the pathophysiological process induced after ischemic stroke. Inhibition of LPA could be a useful therapeutic for treating neuronal injury after stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app