Add like
Add dislike
Add to saved papers

Hyperthermia-mediated drug delivery induces biological effects at the tumor and molecular levels that improve cisplatin efficacy in triple negative breast cancer.

Triple negative breast cancer is an aggressive disease that accounts for at least 15% of breast cancer diagnoses, and a disproportionately high percentage of breast cancer related morbidity. Intensive research efforts are focused on the development of more efficacious treatments for this disease, for which therapeutic options remain limited. The high incidence of mutations in key DNA repair pathways in triple negative breast cancer results in increased sensitivity to DNA damaging agents, such as platinum-based chemotherapies. Hyperthermia has been successfully used in breast cancer treatment to sensitize tumors to radiation therapy and chemotherapy. It has also been used as a mechanism to trigger drug release from thermosensitive liposomes. In this study, mild hyperthermia is used to trigger release of cisplatin from thermosensitive liposomes in the vasculature of human triple negative breast cancer tumors implanted orthotopically in mice. This heat-triggered liposomal formulation of cisplatin resulted in significantly delayed tumor growth and improved overall survival compared to treatment with either non-thermosensitive liposomes containing cisplatin or free cisplatin, as was observed in two independent tumor models (i.e. MDA-MB-231 and MDA-MB-436). The in vitro sensitivity of the cell lines to cisplatin and hyperthermia alone and in combination was characterized extensively using enzymatic assays, clonogenic assays, and spheroid growth assays. Evaluation of correlations between the in vitro and in vivo results served to identify the in vitro approach that is most predictive of the effects of hyperthermia in vivo. Relative expression of several heat shock proteins and the DNA damage repair protein BRCA1 were assayed at baseline and in response to hyperthermia both in vitro and in vivo. Interestingly, delivery of cisplatin in thermosensitive liposomes in combination with hyperthermia resulted in the most significant tumor growth delay, relative to free cisplatin, in the less cisplatin-sensitive cell line (i.e. MDA-MB-231). This work demonstrates that thermosensitive cisplatin liposomes used in combination with hyperthermia offer a novel method for effective treatment of triple negative breast cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app