Add like
Add dislike
Add to saved papers

Effects of fatiguing, submaximal high- versus low-torque isometric exercise on motor unit recruitment and firing behavior.

The purpose of this investigation was to evaluate the effects of repeated, high- (HT: 70% MVIC) versus low-torque (LT: 30% MVIC) isometric exercise performed to failure on motor unit (MU) recruitment and firing behavior of the vastus lateralis. Eighteen resistance-trained males (23.1 ± 3.8 years) completed familiarization, followed by separate experimental sessions in which they completed either HT or LT exercise to failure in random order. LT exercise resulted in a greater time to task failure and a more dramatic decline in the muscle's force capacity, but the total work completed was similar for HT and LT exercise. An examination of the firing trains from 4670 MUs recorded during exercise revealed that firing rates generally increased during HT and LT exercise, but were higher during HT than LT exercise. Furthermore, recruitment thresholds (RT) did not significantly change during HT exercise, whereas the RT of the smallest MUs increased and the RT for the moderate to large MUs decreased during LT exercise. Both HT and LT exercise resulted in the recruitment of additional higher threshold MUs in order to maintain torque production. However, throughout exercise, HT required the recruitment of larger MUs than did LT exercise. In a few cases, however, MUs were recruited by individuals during LT exercise that were similar in size and original (pre) RT to those detected during HT exercise. Thus, the ability to achieve full MU recruitment during LT exercise may be dependent on the subject. Consequently, our data emphasize the task and subject dependency of muscle fatigue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app