Add like
Add dislike
Add to saved papers

Sequence clustering threshold has little effect on the recovery of microbial community structure.

Analysis of microbial community structure by multivariate ordination methods, using data obtained by high-throughput sequencing of amplified markers (i.e., DNA metabarcoding), often requires clustering of DNA sequences into operational taxonomic units (OTUs). Parameters for the clustering procedure tend not to be justified but are set by tradition rather than being based on explicit knowledge. In this study, we explore the extent to which ordination results are affected by variation in parameter settings for the clustering procedure. Amplicon sequence data from nine microbial community studies, representing different sampling designs, spatial scales and ecosystems, were subjected to clustering into OTUs at seven different similarity thresholds (clustering thresholds) ranging from 87% to 99% sequence similarity. The 63 data sets thus obtained were subjected to parallel DCA and GNMDS ordinations. The resulting community structures were highly similar across all clustering thresholds. We explain this pattern by the existence of strong ecological structuring gradients and phylogenetically diverse sets of abundant OTUs that are highly stable across clustering thresholds. Removing low-abundance, rare OTUs had negligible effects on community patterns. Our results indicate that microbial data sets with a clear gradient structure are highly robust to choice of sequence clustering threshold.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app