Add like
Add dislike
Add to saved papers

Functional bla KPC-2 Sequences Are Present in U.S. Beef Cattle Feces Regardless of Antibiotic Use.

Carbapenems are classified as critically important antibiotics since they are employed when resistant Gram-negative bacterial infections fail to respond to other antibiotic therapies. Carbapenem-resistant bacteria (CRB) were traditionally understood to be rare in the U.S. food-producing animals. Recently, using quantitative polymerase chain reaction (qPCR), our group detected blaKPC-2 in all 72 metagenomic DNA (mgDNA) samples prepared from the feces of 36 lots of beef cattle "raised without antibiotics" (RWA) and 36 lots raised "conventionally" (CONV). Since a small internal fragment of the blaKPC-2 gene was targeted by the qPCR detection method, we sought to determine if functional blaKPC-2 -like sequences are present in beef cattle feces. Full-length blaKPC-2 sequences were amplified from 18 mgDNA samples (9 CONV and 9 RWA), cloned into pCR4Blunt-TOPO vectors, and transformed into Escherichia coli TOP10 cells. All 14 of the samples with blaKPC-2 cloned in the same orientation as the Plac promoter had carbapenemase activity and imipenem minimum inhibitory concentrations ≥32 μg/mL. We conclude that the blaKPC-2 genes detected in our previous study were functional, which indicates that CRB were present in those fecal samples. Identification of functional Klebsiella pneumoniae carbapenemases in fecal samples from both CONV and RWA cattle strongly suggests that CRB are more common in U.S. beef cattle feces than previously believed. Critically, more research using similar qPCR methods to determine the levels of carbapenem-resistant genes in human feces, feces from other food animal species, wildlife, companion animals, and the environment are required to accurately assess public health implications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app