Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Meniscus-on-Demand Parallel 3D Nanoprinting.

ACS Nano 2018 May 23
Exploiting a femtoliter liquid meniscus formed on a nanopipet is a powerful approach to spatially control mass transfer or chemical reaction at the nanoscale. However, the insufficient reliability of techniques for the meniscus formation still restricts its practical use. We report on a noncontact, programmable method to produce a femtoliter liquid meniscus that is utilized for parallel three-dimensional (3D) nanoprinting. The method based on electrohydrodynamic dispensing enables one to create an ink meniscus at a pipet-substrate gap without physical contact and positional feedback. By guiding the meniscus under rapid evaporation of solvent in air, we successfully fabricate freestanding polymer 3D nanostructures. After a quantitative characterization of the experimental conditions, we show that we can use a multibarrel pipet to achieve parallel fabrication process of clustered nanowires with precise placement. We expect this technique to advance productivity in nanoscale 3D printing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app