Add like
Add dislike
Add to saved papers

Compressive properties of hollow BN nanoparticles: theoretical modeling and testing using a high-resolution transmission electron microscope.

Nanoscale 2018 May 4
Due to their excellent mechanical properties, nanoparticles have great potential as reinforcing phases in composite materials, friction modifiers in liquid lubricants, catalysts and drug-delivery agents. In the present study, the mechanical analysis of individual spherical hollow BN nanoparticles (BNNPs) using a combination of in situ compression tests inside a high-resolution transmission electron microscope (TEM) and theoretical modelling was conducted. It was found that BNNPs display high mechanical stiffness and a large value of elastic recovery. This enables the hollow BNNPs to exhibit considerably large cyclic deformation (up to 30% of the sphere's original external diameter) and to accumulate plastic deformation of approximately 30% of the total compression strain. Theoretical simulations allowed for elucidation of BNNPs' structural changes under compression at the atomic level and explained the origin of their high stiffness and large critical deformation values.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app