Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Extracellular vesicles: pathogenetic, diagnostic and therapeutic value in traumatic brain injury.

INTRODUCTION: Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Accurate classification according to injury-specific and patient-specific characteristics is critical to help informed clinical decision-making and to the pursuit of precision medicine in TBI. Reliable biomarker signatures for improved TBI diagnostics are required but still an unmet need. Areas covered: Extracellular vesicles (EVs) represent a new class of biomarker candidates in TBI. These nano-sized vesicles have key roles in cell signaling profoundly impacting pathogenic pathways, progression and long-term sequelae of TBI. As such EVs might provide novel neurobiological insights, enhance our understanding of the molecular mechanisms underlying TBI pathophysiology and recovery, and serve as biomarker signatures and therapeutic targets and delivery systems. Expert commentary: EVs are fast gaining momentum in TBI research, paving the way for new transformative diagnostic and treatment approaches. Their potential to sort out TBI variability and active involvement in the mechanisms underpinning different clinical phenotypes point out unique opportunities for improved classification, risk-stratification ad intervention, harboring promise of predictive, personalized, and even preemptive therapeutic strategies. Although a great deal of progress has been made, substantial efforts are still required to ensure the needed rigorous validation and reproducibility for clinical implementation of EVs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app