Add like
Add dislike
Add to saved papers

Further Exploring Solvent-Exposed Tolerant Regions of Allosteric Binding Pocket for Novel HIV-1 NNRTIs Discovery.

Based on the detailed analysis of the binding mode of diarylpyrimidines (DAPYs) with HIV-1 RT, we designed several subseries of novel NNRTIs, with the aim to probe biologically relevant chemical space of solvent-exposed tolerant regions in NNRTIs binding pocket (NNIBP). The most potent compound 21a exhibited significant activity against the whole viral panel, being about 1.5-2.6-fold (WT, EC50 = 2.44 nM; L100I, EC50 = 4.24 nM; Y181C, EC50 = 4.80 nM; F227L + V106A, EC50 = 17.8 nM) and 4-5-fold (K103N, EC50 = 1.03 nM; Y188L, EC50 = 7.16 nM; E138K, EC50 = 3.95 nM) more potent than the reference drug ETV. Furthermore, molecular simulation was conducted to understand the binding mode of interactions of these novel NNRTIs and to provide insights for the next optimization studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app