Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Body weight difference between dual-energy X-ray absorptiometry and multi-frequency bioelectrical impedance analysis attenuates the equivalence of body-composition assessment.

BACKGROUND/OBJECTIVES: Low agreement of body-composition analysis (BCA) using dual-energy X-ray absorptiometry (DXA) and multi-frequency bioelectrical impedance analysis (MF-BIA) has been reported. We examined whether this discrepancy is influenced by the precision of body weight (BW) measurement using DXA.

SUBJECTS/METHODS: This cross-sectional study enrolled 1353 participants aged 53-83 years. A whole-body DXA scan and an eight-polar tactile-electrode impedance-meter using four electronic frequencies of 5, 50, 250, and 500 kHz were employed for BCA. The level of agreement between BW estimated using DXA and actual BW (WgtA) was calculated. The agreement of BCA parameters using DXA and MF-BIA across WgtA groups was also assessed.

RESULTS: DXA incorrectly estimated BW, especially in men. In total, 13.5%, 5.1%, and 5.6% of the participants had BW bias levels of 2%, 3%, and ≥4%, respectively. Correlations of BCA parameters measured using DXA and MF-BIA, including body fat mass, percent body fat, and lean body mass (LBM), were gradually reduced, whereas the root mean square error was increased in accordance with the reduction in WgtA. DXA provided a lower LBM amount compared to MF-BIA and this difference increased significantly across groups with poor WgtA.

CONCLUSIONS: Lower WgtA greatly contributed to the difference in BCA measured using DXA and MF-BIA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app