Add like
Add dislike
Add to saved papers

In vitro Drug Metabolism Investigation of 7-Ethoxycoumarin in Human, Monkey, Dog and Rat Hepatocytes by High Resolution LC-MS/MS.

BACKGROUND: Recently, it has been an increasing concern on the bioactivation and adverse reactions associated with consumption of herbal and nature products. 7-Ethoxycoumarin is one of coumarin family compounds, but little information is available regarding its potential reactive metabolites.

METHOD: 7-ethoxylcoumarin was incubated individually with human, monkey, dog and rat hepatocytes for 2 hr, metabolites were detected, identified and characterized using high resolution liquid chromagraphy - tandem mass spectrometry.

RESULTS: Twenty-eight metabolites (M1 - M28) were detected and identified. O-deethylation, glucuronidation, sulfation, oxygenation, oxidative ring-opening, hydrogenation, glutathionation, dehydrogenation, cysteination, glucosidation, methylation, and hydrolysis were observed. At least sixteen metabolites not reported previously, were newly identified. M1 (O-deethylation, mono-oxygenation and glucuronidation), M3 (O-deethylation and glucuronidation), M5 (hydrolysis and mono-oxygenation), M14 (O-deethylation), M16 (hydrolysis), M22 (oxidative ring-opening and oxygenation) and M27 (monooxygenation) exhibited high mass spectrometric responses in human hepatocytes. M3, M5, M8, M13 (mono-oxygenation), M14, M16, M18 (O-deethylation and sulfation), M22 and M27 exhibited high mass spectrometric responses in monkey hepatocytes. M14, M16, M18, M20 (glutathionation and dehydrogenation) and M27 exhibited high mass spectrometric responses in dog hepatocytes. M1 (Odeethylation, mono-oxygenation and glucuronidation), M3, M5, M13, M14, M16, M17 (cysteination), M18, M20, and M22 exhibited high mass spectrometric responses in rat hepatocytes.

CONCLUSION: Most of new metabolites via oxidative ring-opening and glutathionation were identified. Species differences in metabolism of 7-ethoxylcoumarin in hepatocytes were observed. The analysis of metabolites suggests that 7-ethoxylcoumarin may undergo 3,4-epoxidation responsible for formation of glutathione and its derived cysteine conjugates, carboxylic acid and its glucuronides, glucosides and sulfate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app