Add like
Add dislike
Add to saved papers

Rationalizing the Color in Heavenly Blue Anthocyanin: A Complete Kinetic and Thermodynamic Study.

All equilibrium and rate constants of heavenly blue anthocyanin (HBA 1) as well as the derivatives with two (HBA 2) or none (HBA 3) acylated units were determined. The three acylated units of the sugar in position 3 of the peonidin chromophore of HBA 1 are essential to confer the peculiar stability of its purple and blue colors. The sugars generate an efficient protective environment around position 2 (and 4) of the flavylium cation, through an intramolecular sandwich-type stacking that retards 35-fold the hydration reaction ( kh ) and increases 8.8-fold the dehydration reaction ( k-h ), when compared with the peonidin chromophore HBA 3. The conjugation of these two rates lowers 308-fold the hydration equilibrium constant ( Kh ), corresponding to a raise of the energy level of the hemiketal by 14.2 kJ mol-1 . Conversely, the p Ka of the quinoidal base in HBA 1 is only slightly stabilized in comparison with that of HBA 2 and HBA 3. The energy level of hemiketal increases with the number of acylated units, but the inversion of energies between hemiketal and quinoidal base takes place exclusively for HBA 1 (three acylated units), permitting in moderately acidic solutions the stabilization of the purple quinoidal base. Identical inversion of energy was observed for the corresponding ionized species, allowing the stabilization of the blue ionized quinoidal base in slightly basic solutions. At pH values higher than 8, the hydroxyl groups of the hydroxycinnamic acid units start to deprotonate disrupting the intramolecular sandwich-type stacking and the more or less slow degradation of the anthocyanin is observed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app