Add like
Add dislike
Add to saved papers

Previous Exercise Effects in Cisplatin-Induced Renal Lesions in Rats.

BACKGROUND/AIMS: Physical training has beneficial effects on endothelial function and can influence the regeneration of the endothelial cell. We investigated the effect of physical training on cisplatin (CP)-induced acute kidney injury and assessed the impact of training on endothelial structure and function, and on the inflammatory processes in rats.

METHODS: We injected male Wistar rats subjected to previous physical training in treadmill running (trained, TR) or not (sedentary, SED) with CP (5 mg/kg) (TR+CP and SED+CP groups, respectively). Five days after the injections, blood and urine samples were collected to evaluate renal function and kidneys were harvested for morphological, immunohistochemical, enzyme-linked immunosorbent assay, and analysis of nitric oxide (NO) levels.

RESULTS: Rats treated with CP showed increased levels of plasma creatinine and sodium and potassium fractional excretion. These alterations were associated with increase in tubulointerstitial lesions and macrophage number, reduction of endothelial cells, and increased VEGF, vimentin, and α-smooth muscle actin expression in the outer renal medulla in the SED+CP group. We also found increased levels of renal IL-1β and increased excretion of monocyte chemoattractant protein-1 and transforming growth factor-β compared with controls. These changes were milder in trained rats, associated with increased levels of renal tissue NO, and increased expression of p-eNOS and stromal cell-derived factor-1α (a chemokine involved in kidney repair) in the kidneys of CP-injected trained rats.

CONCLUSIONS: The protective effect of previous training in CP-treated rats was associated with reduced endothelial cell lesions and increased renal production of NO in trained rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app