Add like
Add dislike
Add to saved papers

Auxin Acts Downstream of Ethylene and Nitric Oxide to Regulate Magnesium Deficiency-Induced Root Hair Development in Arabidopsis thaliana.

This study examines the association of auxin with ethylene and nitric oxide (NO) in regulating the magnesium (Mg) deficiency-induced root hair development in Arabidopsis thaliana. With Mg deficiency, both ethylene and NO promoted the elevation of root auxin levels in roots by inducing the expression of AUXIN-RESISTANT1 (AUX1), PIN-FORMED 1 (PIN1) and PIN2 transporters. In turn, auxin stimulated ethylene and NO production by activating the activities of 1-aminocyclopropane-1-carboxylate (ACC) oxidase (ACO), ACC synthase (ACS), nitrate reductase (NR) and NO synthase-like (NOS-L). These processes constituted an NO/ethylene-auxin feedback loop. Interestingly, however, the roles of ethylene and NO in regulating Mg deficiency-induced root hair development required the action of auxin, but not vice versa. In summary, these results suggest that Mg deficiency induces a positive interaction between the accumulation of auxin and ethylene/NO in roots, with auxin acting downstream of ethylene and NO signals to regulate Mg deficiency-induced root hair morphogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app