Add like
Add dislike
Add to saved papers

Ligand-Tuneable, Red-Emitting Iridium(III) Complexes for Efficient Triplet-Triplet Annihilation Upconversion Performance.

A series of substituted 2-phenylquinoxaline ligands have been explored to finely tune the visible emission properties of a corresponding set of cationic, cyclometallated iridium(III) complexes. The electronic and redox properties of the complexes were investigated through experimental (including time-resolved luminescence and transient absorption spectroscopy) and theoretical methods. The complexes display absorption and phosphorescent emissions in the visible region that are attributed to metal to ligand charge-transfer transitions. The different substitution patterns of the ligands induce variations in these parameters. Time-dependent DFT studies support these assignments and show that there is likely to be a strong spin-forbidden contribution to the visible absorption bands at λ=500-600 nm. Calculations also reliably predict the magnitude and trends in triplet emitting wavelengths for the series of complexes. The complexes were assessed as potential sensitisers in triplet-triplet annihilation upconversion experiments by using 9,10-diphenylanthracene as the acceptor; the methylated variants performed especially well with impressive upconversion quantum yields of up to 39.3 %.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app