Add like
Add dislike
Add to saved papers

Suggested design of gold-nanoobjects-based terahertz radiation source for biomedical research.

Nanotechnology 2018 July 14
Gold nanoparticles (GNPs) may serve as devices to emit electromagnetic radiation in the terahertz (THz) range, whereby the energy is delivered by radio frequency or microwave photons which will not by themselves induce transitions between sparse confinement-shaped electron levels of a GNP, but may borrow the energy from longitudinal acoustic (LA) phonons to overcome the confinement gap. Upon excitation, the Fermi electron cannot relax otherwise than via emitting a THz photon, the other relaxation channels being blocked by force of shape and size considerations. Within this general scope that has already been outlined earlier, the present work specifically discusses two-phonon processes, namely (i) a combined absorption-emission of two phonons from the top of the LA branch, and (ii) an absorption of two such phonons with nearly identical wavevectors. The case (i) may serve as a source of soft THz radiation (at ≃0.54 THz), the case (ii) the hard THz radiation at 8.7 THz. Numerical estimates are done for crystalline particles in the shape of rhombicuboctahedra, of 5-7 nm size. A technical realisation of this idea is briefly discussed, assuming the deposition of GNPs onto/within the substrate of Teflon® , the material sustaining high temperatures and transparent in the THz range.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app