Add like
Add dislike
Add to saved papers

Resolving Confined 7 Li Dynamics of Uranyl Peroxide Capsule U 24 .

We obtained a kerosene-soluble form of the lithium salt [UO2 (O2 )(OH)2 ]24 phase (Li-U24 ), by adding cetyltrimethylammonium bromide surfactant to aqueous Li-U24 . Interestingly, its variable-temperature solution 7 Li NMR spectroscopy resolves two narrowly spaced resonances down to -10 °C, which shift upfield with increasing temperature, and finally coalesce at temperatures > 85 °C. Comparison with solid-state NMR demonstrates that the Li dynamics in the Li-U24 -CTA phase involves only exchange between different local encapsulated environments. This behavior is distinct from the rapid Li exchange dynamics observed between encapsulated and external Li environments for Li-U24 in both the aqueous and the solid-state phases. Density functional theory calculations suggest that the two experimental 7 Li NMR chemical shifts are due to Li cations coordinated within the square and hexagonal faces of the U24 cage, and they can undergo exchange within the confined environment, as the solution is heated. Very different than U24 in aqueous media, there is no evidence that the Li cations exit the cage, and therefore, this represents a truly confined space.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app