Add like
Add dislike
Add to saved papers

A Sensitive Water-Soluble Reversible Optical Probe for Hg 2+ Detection.

We report the serendipitous discovery of an optical mercury sensor while trying to develop a water-soluble manganese probe. The sensor is based on a pentaaza macrocycle conjugated to a hemicyanine dye. The pentaaza macrocycle earlier designed in our group was used to develop photoinduced electron transfer (PET)-based "turn-on" fluorescent sensors for manganese. (1) In an attempt to increase the water-solubility of the manganese sensors we changed the dye from BODIPY to hemicyanine. The resultant molecule qHCM afforded a distinct reversible change in the absorption features and a concomitant visible color change upon binding to Hg2+ ions, leading to a highly water-soluble mercury sensor with a 10 ppb detection limit. The molecule acts as a reversible "ON-OFF" fluorescent sensor for Hg2+ with a 35 times decrease in the emission intensity in the presence of 1 equiv of Hg2+ ions. We have demonstrated the applicability of the probe for detecting Hg2+ ions in living cells and in live zebrafish larvae using confocal fluorescence microscopy with visible excitation. High selectivity and sensitivity toward Hg2+ detection make qHCM an attractive probe for detecting Hg2+ in contaminated water sources, which is a major environmental toxicity concern. We have scrutinized the altered metal-ion selectivity of the probe using density functional theory (DFT) and time-dependent DFT calculations, which show that a PET-based metal-sensing scheme is not operational in qHCM. 1 H NMR studies and DFT calculations indicate that Hg2+ ions coordinate to oxygen-donor atoms from both the chromophore and macrocycle, leading to sensitive mercury detection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app