Add like
Add dislike
Add to saved papers

Simulation of protein diffusion: a sensitive probe of protein-solvent interactions.

Aqueous solutions of Candida antarctica lipase B (CALB) were simulated considering three different water models (SPC/E, TIP3P, TIP4P) by a series of molecular dynamics (MD) simulations of three different box sizes (L = 9, 14, and 19 nm) to determine the diffusion coefficient, the water viscosity and the protein density. The protein-water systems were equilibrated for 500 ns, followed by 100 ns production runs which were analysed. The diffusional properties of CALB were characterized by the Stokes radius (RS ), which was derived from the diffusion coefficient and the viscosity. RS was compared to the geometric radius (RG ) of CALB, which was derived from the protein density. RS and RG differed by 0.27 nm for SPC/E and by 0.40 and 0.39 nm for TIP3P and TIP4P, respectively, which characterizes the thickness of the diffusive hydration layer on the protein surface. The simulated hydration layer of CALB resulted in agreement with those experimentally determined for other seven different proteins of comparable size. By avoiding the most common pitfalls, protein diffusion can be reliably simulated: simulating different box sizes to account for the finite size effect, equilibrating the protein-water system sufficiently, and using the complete production run for the determination of the diffusion coefficient.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app