Add like
Add dislike
Add to saved papers

Defective N/S-Codoped 3D Cheese-Like Porous Carbon Nanomaterial toward Efficient Oxygen Reduction and Zn-Air Batteries.

Small 2018 May
Developing a facile and cost-efficient method to synthesize carbon-based nanomaterials possessing excellent structural and functional properties has become one of the most attractive topics in energy conversion and storage fields. In this study, density functional theory calculation results reveal the origin of high oxygen reduction reaction (ORR) activity predominantly derived from the synergistic effect of intrinsic defects and heteroatom dopants (e.g., N, S) that modulate the bandgap and charge density distribution of carbon matrix. Under the guidance of the first-principle prediction, by using ultralight biomass waste as precursor of C, N, and S elements, a defect-rich and N/S dual-doped cheese-like porous carbon nanomaterial is successfully designed and constructed. Herein, the intrinsic defects are artfully generated in terms of alkaline and ammonia activation. The electrochemical measurements display that such a material owns a comparable ORR activity (E1/2  = 0.835 V) to the commercial Pt/C catalyst, along with splendid durability and methanol tolerance in alkali media. Furthermore, as cathode catalyst, it displays a high Zn-air battery performance. The excellent ORR activity of the catalyst can be attributed to its unique 3D porous architecture, abundant intrinsic defects, and high-content active heteroatom dopants in the carbon matrix.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app