Add like
Add dislike
Add to saved papers

Insight into Ca-Substitution Effects on O3-Type NaNi 1/3 Fe 1/3 Mn 1/3 O 2 Cathode Materials for Sodium-Ion Batteries Application.

Small 2018 May
O3-type NaNi1/3 Fe1/3 Mn1/3 O2 (NaNFM) is well investigated as a promising cathode material for sodium-ion batteries (SIBs), but the cycling stability of NaNFM still needs to be improved by using novel electrolytes or optimizing their structure with the substitution of different elements sites. To enlarge the alkali-layer distance inside the layer structure of NaNFM may benefit Na+ diffusion. Herein, the effect of Ca-substitution is reported in Na sites on the structural and electrochemical properties of Na1- x Cax /2 NFM (x = 0, 0.05, 0.1). X-ray diffraction (XRD) patterns of the prepared Na1- x Cax /2 NFM samples show single α-NaFeO2 type phase with slightly increased alkali-layer distance as Ca content increases. The cycling stabilities of Ca-substituted samples are remarkably improved. The Na0.9 Ca0.05 Ni1/3 Fe1/3 Mn1/3 O2 (Na0.9 Ca0.05 NFM) cathode delivers a capacity of 116.3 mAh g-1 with capacity retention of 92% after 200 cycles at 1C rate. In operando XRD indicates a reversible structural evolution through an O3-P3-P3-O3 sequence of Na0.9 Ca0.05 NFM cathode during cycling. Compared to NaNMF, the Na0.9 Ca0.05 NFM cathode shows a wider voltage range in pure P3 phase state during the charge/discharge process and exhibits better structure recoverability after cycling. The superior cycling stability of Na0.9 Ca0.05 NFM makes it a promising material for practical applications in sodium-ion batteries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app