Add like
Add dislike
Add to saved papers

Estimated number of off-target candidate sites for antisense oligonucleotides in human mRNA sequences.

Antisense oligonucleotide (ASO) therapeutics are single-stranded oligonucleotides which bind to RNA through sequence-specific Watson-Crick base pairings. A unique mechanism of toxicity for ASOs is hybridization-dependent off-target effects that can potentially occur due to the binding of ASOs to complementary regions of unintended RNAs. To reduce the off-target effects of ASOs, it would be useful to know the approximate number of complementary regions of ASOs, or off-target candidate sites of ASOs, of a given oligonucleotide length and complementarity with their target RNAs. However, the theoretical number of complementary regions with mismatches has not been reported to date. In this study, we estimated the general number of complementary regions of ASOs with mismatches in human mRNA sequences by mathematical calculation and in silico analysis using several thousand hypothetical ASOs. By comparing the theoretical number of complementary regions estimated by mathematical calculation to the actual number obtained by in silico analysis, we found that the number of complementary regions of ASOs could be broadly estimated by the theoretical number calculated mathematically. Our analysis showed that the number of complementary regions increases dramatically as the number of tolerated mismatches increases, highlighting the need for expression analysis of such genes to assess the safety of ASOs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app