Add like
Add dislike
Add to saved papers

Investigation of the Mechanism of Therapeutic Protein-Drug Interaction Between Methotrexate and Golimumab, an Anti-TNFα Monoclonal Antibody.

AAPS Journal 2018 April 18
A prominent example of human therapeutic protein-drug interaction (TP-DI) is between methotrexate (MTX) and anti-TNFα mAbs. One plausible mechanism for this TP-DI is through the pharmacodynamic effect of MTX on immunogenicity. However, there is no definitive evidence to substantiate this mechanism, and other competing hypotheses, such as MTX suppressing FcγRI expression thereby affecting mAb PK, have also been proposed. In order to understand this mechanism, a cynomolgus monkey study was conducted using golimumab as a model compound. Golimumab elicited high incidences of immunogenicity in healthy cynomolgus monkeys. Concomitant dosing of MTX delayed the onset and reduced the magnitude of anti-drug antibody (ADA) formation. The impact of MTX on golimumab PK correlated with the ADA status. Prior to ADA formation, MTX has no discernable effect on golimumab PK. Additionally, no alteration in FcγRI expression was observed following MTX treatment. The impact of MTX on golimumab immunogenicity and PK has been observed in patients with rheumatoid arthritis, psoriatic arthritis (PsA), and ankylosing spondylitis. In a representative phase 3 study of golimumab in patients with PsA, patients not receiving concomitant MTX was reported to have ~ 30% lower steady-state trough golimumab levels compared to those who received MTX. However, further analysis showed that PsA patients who were negative for ADA in both treatment groups had comparable trough levels of golimumab. Taken together, our results suggest that the mechanism of TP-DI between MTX and golimumab can mostly be attributed to the pharmacodynamic effect of MTX, i.e., the lowering of immunogenicity and immunogenicity-mediated clearance of mAbs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app