Add like
Add dislike
Add to saved papers

Biosorption of metal ions on lignocellulosic materials: batch and continuous-flow process studies.

Metal adsorption capacities of bioadsorbents, derived from low-cost agricultural waste, were assessed. Batch and column experiments were conducted for evaluation of lead (Pb), cadmium (Cd), and chromium (Cr) sorption kinetics on to modified (by treating with base and acid) and unmodified sugarcane bagasse and corn cob. Langmuir, Freundlich, and Redlich-Peterson equations were used to understand metal adsorption behavior and Elovich and Lagergren's pseudo-first-order and pseudo-second-order kinetics equations were used for estimation of adsorption kinetics parameter. The suitability of the models to experimental data was reflected by high r2 values. Among sorption models, Langmuir and Redlich-Peterson were proved equally good and Cd, Cr, and Pb adsorption process followed the Langmuir isotherm. Batch adsorption experiment showed that the metal adsorption ability of the treated materials was higher than that of untreated. The adsorption sequence was Pb > Cr > Cd. Pseudo-second-order kinetics model was found suitable in describing the obtained data. Result of the column adsorption experiments supplement the batch results and revealed the role of agricultural waste materials in remediation of heavy metal-polluted water.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app