Add like
Add dislike
Add to saved papers

Structural Basis for pH-Dependent Oligomerization of Dihydropyrimidinase from Pseudomonas aeruginosa PAO1.

Dihydropyrimidinase, a dimetalloenzyme containing a carboxylated lysine within the active site, is a member of the cyclic amidohydrolase family, which also includes allantoinase, dihydroorotase, hydantoinase, and imidase. Unlike all known dihydropyrimidinases, which are tetrameric, pseudomonal dihydropyrimidinase forms a dimer at neutral pH. In this paper, we report the crystal structure of P. aeruginosa dihydropyrimidinase at pH 5.9 (PDB entry 5YKD). The crystals of P. aeruginosa dihydropyrimidinase belonged to space group C 2221 with cell dimensions of a  = 108.9, b  = 155.7, and c  = 235.6 Å. The structure of P. aeruginosa dihydropyrimidinase was solved at 2.17 Å resolution. An asymmetric unit of the crystal contained four crystallographically independent P. aeruginosa dihydropyrimidinase monomers. Gel filtration chromatographic analysis of purified P. aeruginosa dihydropyrimidinase revealed a mixture of dimers and tetramers at pH 5.9. Thus, P. aeruginosa dihydropyrimidinase can form a stable tetramer both in the crystalline state and in the solution. Based on sequence analysis and structural comparison of the dimer-dimer interface between P. aeruginosa dihydropyrimidinase and Thermus sp. dihydropyrimidinase, different oligomerization mechanisms are proposed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app