Add like
Add dislike
Add to saved papers

Efficient white phosphorescent organic light-emitting diodes using ultrathin emissive layers (<1 nm).

Scientific Reports 2018 April 18
In this paper, efficient phosphorescent white organic light-emitting diodes (WOLEDs) were fabricated based on ultrathin doping-free emissive layers and mixed bipolar interlayers. The energy transfer processes were proved via the research of WOLEDs with different interlayer thicknesses and transient photoluminescence lifetime. WOLEDs with optimized thickness of doping-free emissive layers show maximum current efficiency of 47.8 cd/A and 44.9 cd/A for three-colors and four-colors WOLEDs, respectively. The Commission Internationale de L'Eclairage coordinates shows a very slight variation of ( ± 0.02, ± 0.02) from 5793 cd/m2 to 11370 cd/m2 for three-colors WOLEDs and from 3038 cd/m2 to 13720 cd/m2 for four-colors WOLEDs, respectively. The stability of the spectra is attributed to the stable and sequential energy transfer among the various dyes. The color temperature of four-colors WOLEDs can be obtained from 2659 to 6636 by adjusting the thickness of ultrathin emissive layer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app