Add like
Add dislike
Add to saved papers

MicroRNA-197 induces epithelial-mesenchymal transition and invasion through the downregulation of HIPK2 in lung adenocarcinoma.

The major cause of cancer-related deaths in patients with lung adenocarcinoma (LAD) is due to distant metastasis. Many reports have indicated that miRNA plays a key role in tumour metastasis. The expression of miR-197 is correlated with LADprogression, however, the mechanism of miR-197 is still unknown in the processing of LAD. A Boyden chamber migration/invasion assay was used for the metastatic function study in vitro. Real-time PCR andWestern blot assays were employed to analyse the EMT hallmark changes in both the mRNA and protein levels. 3'-UTR reporter luciferase assay was used to show that HIPK2 is a directtarget of miR-197. miR-197 enhances LAD cell migration and invasion miR-197. The downregulation of miR-197 suppresses the EMT and migration ability. HIPK2 is a direct functional target of miR-197 in LAD metastasis. In summary, miR-197 controls EMT and metastasis by directly silencing HIPK2. The findings suggest that interfering with the miR-197-dependent regulation of HIPK2 could be a useful approach for the treatment of patients with late stage metastatic LAD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app