JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

MinE conformational switching confers robustness on self-organized Min protein patterns.

Protein patterning is vital for many fundamental cellular processes. This raises two intriguing questions: Can such intrinsically complex processes be reduced to certain core principles and, if so, what roles do the molecular details play in individual systems? A prototypical example for protein patterning is the bacterial Min system, in which self-organized pole-to-pole oscillations of MinCDE proteins guide the cell division machinery to midcell. These oscillations are based on cycling of the ATPase MinD and its activating protein MinE between the membrane and the cytoplasm. Recent biochemical evidence suggests that MinE undergoes a reversible, MinD-dependent conformational switch from a latent to a reactive state. However, the functional relevance of this switch for the Min network and pattern formation remains unclear. By combining mathematical modeling and in vitro reconstitution of mutant proteins, we dissect the two aspects of MinE's switch, persistent membrane binding and a change in MinE's affinity for MinD. Our study shows that the MinD-dependent change in MinE's binding affinity for MinD is essential for patterns to emerge over a broad and physiological range of protein concentrations. Mechanistically, our results suggest that conformational switching of an ATPase-activating protein can lead to the spatial separation of its distinct functional states and thereby confer robustness on an intracellular protein network with vital roles in bacterial cell division.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app