Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Preclinical tools for the evaluation of tuberculosis treatment regimens for children.

Tuberculosis (TB) treatment regimens have been extrapolated from adults to children. However, pediatric disease merits different treatment strategies to avoid under- or over-treatment. While animal models have been pivotal in identifying effective regimens for adult disease, pediatric TB is heterogeneous and cannot be represented by a single preclinical model. Infants and young children most commonly have disseminated disease or tuberculous meningitis (TBM), school-aged children have paucibacillary disease, and adolescents have adult-like cavitary lung disease. Models simulating these forms of pediatric TB have been developed, but their utility in assessing treatment regimens is in the early stages. Disseminated, intracellular disease can be partly reproduced by an in vitro pharmacodynamic system, TBM by a pediatric rabbit model of TBM, paucibacillary TB by the balbC mouse model, and cavitary disease by a rabbit model and a C3HeB/FeJ mouse model of pulmonary TB. Although there is no one-size-fits-all preclinical 'pediatric TB model', these models can be employed to study drug distribution to the sites of disease and, coupled with translational modeling, used to help select and optimize regimens for testing in children. Use of these models may accelerate the development of regimens for rare or hard-to-treat TB, namely drug-resistant TB and TBM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app