Add like
Add dislike
Add to saved papers

Antioxidative enzymes and expression of rbcL gene as tools to monitor heavy metal-related stress in plants.

The aim of the study was to evaluate sensitivity and potential applications of selected biomarkers in phytoremediation under complex heavy metal contamination in Sinapis alba L., Robinia pseudoacacia L. and Lupinus luteus L as a potential tools in effective phytoremediation management. The toxicity assessment was conducted using selected measurement endpoints, both classical and advanced, i.e., germination index, roots length, guaiacol peroxidase activity (GPX), chlorophyll and protein content, the amount of total phenolic compounds (TPC) and level of expression of one of the ribulose-bisphosphate carboxylase genes (rbcL). Moreover, the influence of organic additives: cattle, horse manure, and vermicompost on lowering plant abiotic stress caused by complex heavy metal contamination was studied to assess the possible applications of selected stress markers in large scale phytoremediation planning. The results demonstrated the beneficial effects of selected soil additives on plant development. The 5% difference in the quantity of applied amendment caused statistically significant differences in GPX, TPC, chlorophyll content and expression level of rbcL. Among all endpoints, GPX activity, chlorophyll, and phenolic compounds content, as well as the expression of rbcL, turned out to be the most reliable assays for determination of the type and dosage of selected soil amendments (fertilizers) in the assisted phytoremediation process. Selected markers can be used to achieve the desired level of plant abiotic stress and consequently photosynthesis efficiency and CO2 sequestration. The results showed, that presented assays can be used in different taxonomical groups such as Fabaceae for planning effective phytoremediation process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app