Add like
Add dislike
Add to saved papers

Iterative genome editing of Escherichia coli for 3-hydroxypropionic acid production.

Synthetic biology requires strategies for the targeted, efficient, and combinatorial engineering of biological sub-systems at the molecular level. Here, we report the use of the iterative CRISPR EnAbled Trackable genome Engineering (iCREATE) method for the rapid construction of combinatorially modified genomes. We coupled this genome engineering strategy with high-throughput phenotypic screening and selections to recursively engineer multiple traits in Escherichia coli for improved production of the platform chemical 3-hydroxypropionic acid (3HP). Specifically, we engineered i) central carbon metabolism, ii) 3HP synthesis, and (iii) 3HP tolerance through design, construction and testing of ~ 162,000 mutations across 115 genes spanning global regulators, transcription factors, and enzymes involved in 3HP synthesis and tolerance. The iCREATE process required ~ 1 month to perform 13 rounds of combinatorial genome modifications with targeted gene knockouts, expression modification by ribosomal binding site (RBS) engineering, and genome-level site-saturation mutagenesis. Specific mutants conferring increased 3HP titer, yield, and productivity were identified and then combined to produce 3HP at a yield and concentration ~ 60-fold higher than the wild-type strain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app