JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Epigenetic and non-epigenetic functions of the RYBP protein in development and disease.

Over the last decades significant advances have been made in our understanding of the molecular mechanisms controlling organismal development. Among these mechanisms the knowledge gained on the roles played by epigenetic regulation of gene expression is extensive. Epigenetic control of transcription requires the function of protein complexes whose specific biochemical activities, such as histone mono-ubiquitylation, affect chromatin compaction and, consequently activation or repression of gene expression. Complexes composed of Polycomb Group (PcG) proteins promote transcriptional silencing while those containing trithorax group (trxG) proteins promote transcriptional activation. However, other epigenetic protein factors, such as RYBP, have the ability to interact with both PcG and trxG and thus putatively participate in the reversibility of chromatin compaction, essential to respond to developmental cues and stress signals. This review discusses the developmental and mechanistic functions of RYBP, a ubiquitin binding protein, in epigenetic control mediated by the PcG/trxG proteins to control transcription. Recent experimental evidence indicates that proteins regulating chromatin compaction also participate in other molecular mechanisms controlling development, such as cell death. This review also discusses the role of RYBP in apoptosis through non-epigenetic mechanisms as well as recent investigations linking the role of RYBP to apoptosis and cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app