Add like
Add dislike
Add to saved papers

Laser-Rewriteable Ferromagnetism at Thin-Film Surfaces.

Manipulation of magnetism using laser light is considered as a key to the advancement of data storage technologies. Until now, most approaches seek to optically switch the direction of magnetization rather than to reversibly manipulate the ferromagnetism itself. Here, we use ∼100 fs laser pulses to reversibly switch ferromagnetic ordering on and off by exploiting a chemical order-disorder phase transition in Fe60 Al40 , from the B2 to the A2 structure and vice versa. A single laser pulse above a threshold fluence causes nonferromagnetic B2 Fe60 Al40 to disorder and form the ferromagnetic A2 structure. Subsequent laser pulsing below the threshold reverses the surface to B2 Fe60 Al40 , erasing the laser-induced ferromagnetism. Simulations reveal that the order-disorder transition is regulated by the extent of surface supercooling; above the threshold for complete melting throughout the film thickness, the liquid phase can be deeply undercooled before solidification. As a result, the vacancy diffusion in the resolidified region is limited and the region is trapped in the metastable chemically disordered state. Laser pulsing below the threshold forms a limited supercooled surface region that solidifies at sufficiently high temperatures, enabling diffusion-assisted reordering. This demonstrates that ultrafast lasers can achieve subtle atomic rearrangements in bimetallic alloys in a reversible and nonvolatile fashion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app