Add like
Add dislike
Add to saved papers

Redox-Responsive Covalent Organic Nanosheets from Viologens and Calix[4]arene for Iodine and Toxic Dye Capture.

Owing to their chemical and thermal stabilities, high uptake capacities, and easy recyclability, covalent organic polymers (COPs) have shown promise as pollutant sponges. Herein, we describe the use of diazo coupling to synthesize two cationic COPs, COP1++ and COP2++ , that incorporate a viologen-based molecular switch and an organic macrocycle, calix[4]arene. The COPs form nanosheets that have height profiles of 6.00 nm and 8.00 nm, respectively, based on AFM measurements. The sheets remain morphologically intact upon one- or two-electron reductions of their viologen subunits. MD simulations of the COPs containing dicationic viologens indicate that the calix[4]arenes adopt a partial cone conformation and that, in height, the individual 2D polymer layers are 5.48 Å in COP1++ and 5.65 Å in COP2++ , which, together with the AFM measurements, suggests that the nanosheets are composed of 11 and 14 layers, respectively. Whether their viologens are in dicationic, radical cationic, or neutral form, the COPs exhibit high affinity for iodine, reaching up to 200 % mass increase when exposed to iodine vapor at 70 °C, which makes the materials among the best-performing nanosheets for iodine capture reported in the literature. In addition, the COPs effectively remove Congo red from solution in the pH range of 2-10, reaching nearly 100 % removal within 15 minutes at acidic pH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app