Add like
Add dislike
Add to saved papers

FeS 2 Nanoparticles Decorated Graphene as Microbial-Fuel-Cell Anode Achieving High Power Density.

Microbial fuel cells (MFCs) have received great attention worldwide due to their potential in recovering electrical energy from waste and inexhaustible biomass. Unfortunately, the difficulty of achieving the high power, especially in real samples, remains a bottleneck for their practical applications. Herein, FeS2 nanoparticles decorated graphene is fabricated via a simple hydrothermal reaction. The FeS2 nanoparticles decorated graphene anode not only benefits bacterial adhesion and enrichment of electrochemically active Geobacter species on the electrode surface but also promotes efficient extracellular electron transfer, thus giving rise to a fast start-up time of 2 d, an unprecedented power density of 3220 mW m-2 and a remarkable current density of 3.06 A m-2 in the acetate-feeding and mixed bacteria-based MFCs. Most importantly, the FeS2 nanoparticles decorated graphene anode successfully achieves a power density of 310 mW m-2 with simultaneous removal of 1319 ± 28 mg L-1 chemical oxygen demand in effluents from a beer factory wastewater. The characteristics of improved power generation and enhanced pollutant removal efficiency opens the door toward development of high-performance MFCs via rational anode design for practical application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app