Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

The Role of Bmp2 in the Maturation and Maintenance of the Murine Knee Joint.

Bone morphogenetic proteins (BMPs) are key regulators of skeletal development, growth, and repair. Although BMP signaling is required for synovial joint formation and is also involved in preserving joint function after birth, the role of specific BMP ligands in adult joint homeostasis remains unclear. The purpose of this study was to define the role of Bmp2 in the morphogenesis and maintenance of the knee joint. To do this, we first created Bmp2-LacZ and Gdf5-LacZ knock-in mice and compared their expression patterns in the developing and postnatal murine knee joint. We then generated a knockout mouse model using the Gdf5-cre transgene to specifically delete Bmp2 within synovial joint-forming cells. Joint formation, maturation, and homeostasis were analyzed using histology, immunohistochemistry, qRT-PCR, and atomic force microscopy (AFM)-based nanoindentation to assess the cellular, molecular, and biomechanical changes in meniscus and articular cartilage. Bmp2 is expressed in the articular cartilage and meniscus of the embryonic and adult mouse knee in a pattern distinct from Gdf5. The knee joints of the Bmp2 knockout mice form normally but fail to mature properly. In the absence of Bmp2, the extracellular matrix and shape of the meniscus are altered, resulting in functional deficits in the meniscus and articular cartilage that lead to a progressive osteoarthritis (OA) like knee pathology as the animals age. These findings demonstrate that BMP activity provided by Bmp2 is required for the maturation and maintenance of the murine knee joint and reveal a unique role for Bmp2 that is distinct from Gdf5 in knee joint biology. © 2018 American Society for Bone and Mineral Research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app