JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Actin and myosin II modulate differentiation of pluripotent stem cells.

Use of stem cell-based therapies in tissue engineering and regenerative medicine is hindered by efficient means of directed differentiation. For pluripotent stem cells, an initial critical differentiation event is specification to one of three germ lineages: endoderm, mesoderm, and ectoderm. Differentiation is known to be regulated by numerous extracellular and intracellular factors, but the role of the cytoskeleton during specification, or early differentiation, is still unknown. In these studies, we used agonists and antagonists to modulate actin polymerization and the actin-myosin molecular motor during spontaneous differentiation of embryonic stem cells in embryoid bodies. We found that inhibiting either actin polymerization or actin-myosin interactions led to a decrease in differentiation to the mesodermal lineage and an increase in differentiation to the endodermal lineage. Thus, targeting processes that regulate cytoskeletal tension may be effective in enhancing or inhibiting differentiation towards cells of the endodermal or mesodermal lineages, which include hepatocytes, islets, cardiomyocytes, endothelial cells, and osteocytes. Therefore, these fundamental findings demonstrate that modulation of the cytoskeleton may be useful in production for a range of cell-based therapies, including for liver, pancreatic, cardiac, vascular, and orthopedic applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app