Add like
Add dislike
Add to saved papers

Time-of-flight PET time calibration using data consistency.

This paper presents new data driven methods for the time of flight (TOF) calibration of positron emission tomography (PET) scanners. These methods are derived from the consistency condition for TOF PET, they can be applied to data measured with an arbitrary tracer distribution and are numerically efficient because they do not require a preliminary image reconstruction from the non-TOF data. Two-dimensional simulations are presented for one of the methods, which only involves the two first moments of the data with respect to the TOF variable. The numerical results show that this method estimates the detector timing offsets with errors that are larger than those obtained via an initial non-TOF reconstruction, but remain smaller than [Formula: see text] of the TOF resolution and thereby have a limited impact on the quantitative accuracy of the activity image estimated with standard maximum likelihood reconstruction algorithms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app