Add like
Add dislike
Add to saved papers

Harvesting resonantly-trapped light for small molecule oxidation reactions at the Au/α-Fe 2 O 3 interface.

Nanoscale 2018 April 27
Plasmonic metal nanoparticles (NPs) extend the overall light absorption of semiconductor materials. However, it is not well understood how coupling metal NPs to semiconductors alters the photo-electrochemical activity of small molecule oxidation (SMO) reactions. Different photo-anode electrodes comprised of Au NPs and α-Fe2O3 are designed to elucidate how the coupling plays not only a role in the water oxidation reaction (WO) but also performs for different SMO reactions. In this regard, Au NPs are inserted at specific regions within and/or on α-Fe2O3 layers created with a sequential electron beam evaporation method and multiple annealing treatments. The SMO and WO reactions are probed with broad-spectrum irradiation experiments with an emphasis on light-driven enhancements above and below the α-Fe2O3 band gap. Thin films of α-Fe2O3 supported on a gold back reflective layer resonantly-traps incident light leading to enhanced SMO/WO conversion efficiencies at high overpotential (η) for above band-gap excitations with no SMO activity observed at low η. In contrast, a substantial increase in the light-driven SMO activity is observed at low η, as well as for below band-gap excitations when sufficiently thin α-Fe2O3 films are decorated with Au NPs at the solution-electrode interface. The enhanced photo-catalytic activity is correlated with increased surface oxygen content (hydroxyl groups) at the Au/α-Fe2O3 interface, as well as simulated volume-integrated near-field enhancements over select regions of the Au/α-Fe2O3 interface providing an important platform for future SMO/WO photo-electrocatalyst development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app