Add like
Add dislike
Add to saved papers

Oxidation of Organic Compounds in Water by Unactivated Peroxymonosulfate.

Peroxymonosulfate (HSO5 - and PMS) is an optional bulk oxidant in advanced oxidation processes (AOPs) for treating wastewaters. Normally, PMS is activated by the input of energy or reducing agent to generate sulfate or hydroxyl radicals or both. This study shows that PMS without explicit activation undergoes direct reaction with a variety of compounds, including antibiotics, pharmaceuticals, phenolics, and commonly used singlet-oxygen (1 O2 ) traps and quenchers, specifically furfuryl alcohol (FFA), azide, and histidine. Reaction time frames varied from minutes to a few hours at pH 9. With the use of a test compound with intermediate reactivity (FFA), electron paramagnetic resonance (EPR) and scavenging experiments ruled out sulfate and hydroxyl radicals. Although 1 O2 was detected by EPR and is produced stoichiometrically through PMS self-decomposition, 1 O2 plays only a minor role due to its efficient quenching by water, as confirmed by experiments manipulating the 1 O2 formation rate (addition of H2 O2 ) or lifetime (deuterium solvent isotope effect). Direct reactions with PMS are highly pH- and ionic-strength-sensitive and can be accelerated by (bi)carbonate, borate, and pyrophosphate (although not phosphate) via non-radical pathways. The findings indicate that direct reaction with PMS may steer degradation pathways and must be considered in AOPs and other applications. They also signal caution to researchers when choosing buffers as well as 1 O2 traps and quenchers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app