Add like
Add dislike
Add to saved papers

Rational Development of Cobalt β-Ketoiminate Complexes: Alternative Precursors for Vapor-Phase Deposition of Spinel Cobalt Oxide Photoelectrodes.

A series of six cobalt ketoiminates, of which one was previously reported but not explored as a chemical vapor deposition (CVD) precursor, namely, bis(4-(isopropylamino)pent-3-en-2-onato)cobalt(II) ([Co( i pki)2 ], 1), bis(4-(2-methoxyethylamino)pent-3-en-2-onato)cobalt(II) ([Co(meki)2 ], 2), bis(4-(2-ethoxyethylamino)pent-3-en-2-onato)cobalt(II) ([Co(eeki)2 ], 3), bis(4-(3-methoxy-propylamino)pent-3-en-2-onato)cobalt(II) ([Co(mpki)2 ], 4), bis(4-(3-ethoxypropylamino)pent-3-en-2-onato)cobalt(II) ([Co(epki)2 ], 5), and bis(4-(3-isopropoxypropylamino)pent-3-en-2-onato)cobalt(II) ([Co( i ppki)2 ], 6) were synthesized and thoroughly characterized. Single-crystal X-ray diffraction (XRD) studies on compounds 1-3 revealed a monomeric structure with distorted tetrahedral coordination geometry. Owing to the promising thermal properties, metalorganic CVD of CoO x was performed using compound 1 as a representative example. The thin films deposited on Si(100) consisted of the spinel-phase Co3 O4 evidenced by XRD, Rutherford backscattering spectrometry/nuclear reaction analysis, and X-ray photoelectron spectroscopy. Photoelectrochemical water-splitting capabilities of spinel CoO x films grown on fluorine-doped tin oxide (FTO) and TiO2 -coated FTO revealed that the films show p-type behavior with conduction band edge being estimated to -0.9 V versus reversible hydrogen electrode. With a thin TiO2 underlayer, the CoO x films exhibit photocurrents related to proton reduction under visible light.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app