Add like
Add dislike
Add to saved papers

Selective and sensitive Escherichia coli detection based on a T4 bacteriophage-immobilized multimode microfiber.

Escherichia coli bacteria have been found to be responsible for various health outbreaks caused by contaminated food and water. Accurate and rapid test of E. coli is thus crucial for protecting the public health. A fast-response, label-free bacteriophage-based detection of E. coli using multimode microfiber probe is proposed and demonstrated in this article. Due to the abrupt taper and subwavelength diameter, different modes are excited and guided in the microfiber as evanescent field that can interact with surrounding E. coli directly. The change of E. coli concentration and corresponding binding of E. coli bacteria on microfiber surface will lead to the shift of optical spectrum, which can be exploited for the application of biosensing. The proposed method is capable of reliable detection of E. coli concentration as low as 103 cfu/mL within the range of 103 to 107  cfu/mL. Owing to the advantages of high sensitivity and fast response, the microfiber probe has great potential application in the fields of environment monitoring and food safety.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app